Compact Ho:YLF-pumped ZnGeP2-based optical parametric amplifiers tunable in the molecular fingerprint regime

verfasst von
Siqi Cheng, Gourab Chatterjee, Friedjof Tellkamp, Tino Lang, Axel Ruehl, Ingmar Hartl, R. J.Dwayne Miller
Abstract

We report on a compact mid-infrared laser architecture, comprising a chain of ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield (≤60 μJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-μm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-μm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 μm, corresponding to ~6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.

Organisationseinheit(en)
QUEST Leibniz Forschungsschule
Externe Organisation(en)
Universität Hamburg
Deutsches Elektronen-Synchrotron (DESY)
University of Toronto
Laser Zentrum Hannover e.V. (LZH)
Max-Planck-Institut für Struktur und Dynamik der Materie
Typ
Artikel
Journal
Optics letters
Band
45
Seiten
2255-2258
Anzahl der Seiten
4
ISSN
0146-9592
Publikationsdatum
09.04.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1364/OL.389535 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“