Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant

verfasst von
The LIGO Scientific Collaboration , Virgo Collaboration , B P Abbott, R Abbott, T D Abbott, S Abraham, F Acernese, K Ackley, C Adams, V B Adya, C Affeldt, M Agathos, K Agatsuma, N Aggarwal, O D Aguiar, L Aiello, A Ain, P Ajith, G Allen, A Allocca, M A Aloy, P A Altin, A Amato, S Anand, A Ananyeva, S B Anderson, W G Anderson, S V Angelova, S Antier, S Appert, K Arai, M C Araya, J S Areeda, M Arène, N Arnaud, S M Aronson, K G Arun, S Ascenzi, G Ashton, S M Aston, P Astone, F Aubin, S L Danilishin, K Danzmann, M Heurs, H Lück, D Steinmeyer, H Vahlbruch, L-w Wei, D M Wilken, B Willke, H Wittel, Sukanta Bose, D. D. Brown, Y. B. Chen, J. Gniesmer, J. Hennig, Manuela Hanke, M. T. Hübner, R. N. Lang, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, X. Li, C. A. Rose, D. Rose, J. R. Sanders, Patricia Schmidt, L. Sun, Y. F. Wang, D. S. Wu, L. Zhang, Minchuan Zhou, X. J. Zhu, G. Bergmann, Aparna Bisht, Nina Bode, P. Booker, Marc Brinkmann, M. Cabero, O. de Varona, S. Hochheim, J. Junker, W. Kastaun, S. Khan, Stefan Kaufer, R. Kirchhoff, Patrick Koch, N. Koper, S. M. Köhlenbeck, Volker Kringel, C. Krämer, G. Kuehn, S. Leavey, J. Lehmann, James Lough, Moritz Mehmet, Fabian Meylahn, Arunava Mukherjee, Nikhil Mukund, M. Nery, F. Ohme, P. Oppermann, A. Rüdiger, M. Phelps, Emil Schreiber, B. W. Schulte, Y. Setyawati, M. Standke, M. Steinke, Michael Weinert, F. Wellmann, Peter Weßels, W. Winkler, J. Woehler, Peter Aufmuth
Abstract

GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05M⊙, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67M⊙ for the case that the merger results in a hypermassive neutron star.

Organisationseinheit(en)
QUEST Leibniz Forschungsschule
Institut für Gravitationsphysik
QuantumFrontiers
Externe Organisation(en)
Australian National University
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Washington State University Pullman
Inter-University Centre for Astronomy and Astrophysics India
University of Adelaide
Universität Hamburg
University of Glasgow
Monash University
LIGO Laboratory
Inje University
Stanford University
California Institute of Technology (Caltech)
California State University Fullerton
The California State University
Radboud Universität Nijmegen (RU)
University of Melbourne
The Chinese University of Hong Kong
University of Texas Rio Grande Valley
Northwestern University
Typ
Artikel
Journal
Classical and quantum gravity
Band
37
Anzahl der Seiten
44
ISSN
0264-9381
Publikationsdatum
16.01.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (sonstige)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1908.01012 (Zugang: Offen)
https://doi.org/10.1088/1361-6382/ab5f7c (Zugang: Offen)
https://doi.org/10.15488/11395 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“