GW190425

Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M o

verfasst von
The LIGO Scientific Collaboration , B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, G. Allen, A. Allocca, M. A. Aloy, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Antier, S. Appert, K. Arai, M. C. Araya, J. S. Areeda, M. Arène, N. Arnaud, S. M. Aronson, K. G. Arun, S. Ascenzi, G. Ashton, S. M. Aston, P. Astone, S. L. Danilishin, K. Danzmann, M. Heurs, H. Lück, D. Steinmeyer, H. Vahlbruch, L.-w. Wei, D. M. Wilken, B. Willke, H. Wittel, Sukanta Bose, D. D. Brown, Y. B. Chen, Hai-Ping Cheng, J. Gniesmer, Manuela Hanke, J. Hennig, M. T. Hübner, R. N. Lang, C. H. Lee, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, X. Li, C. A. Rose, D. Rose, J. R. Sanders, Roy S., Patricia Schmidt, L. Sun, D. S. Wu, L. Zhang, X. J. Zhu, Minchuan Zhou, G. Bergmann, Aparna Bisht, Nina Bode, P. Booker, Marc Brinkmann, M. Cabero, O. de Varona, S. Hochheim, J. Junker, W. Kastaun, Stefan Kaufer, R. Kirchhoff, P. Koch, N. Koper, S. M. Köhlenbeck, S. Khan, C. Krämer, Volker Kringel, G. Kuehn, S. Leavey, J. Lehmann, James Lough, Moritz Mehmet, Fabian Meylahn, Nikhil Mukund, M. Nery, F. Ohme, P. Oppermann, Emil Schreiber, B. W. Schulte, Y. Setyawati, M. Steinke, A. Rüdiger, M. Phelps, Michael Weinert, F. Wellmann, Peter Weßels, W. Winkler, J. Woehler, Peter Aufmuth, Fabio Bergamin, Arunava Mukherjee, M. Standke
Abstract

On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

Organisationseinheit(en)
QUEST Leibniz Forschungsschule
Institut für Gravitationsphysik
QuantumFrontiers
Externe Organisation(en)
Australian National University
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Indian Institute of Technology Delhi (IITD)
Washington State University Pullman
Inter-University Centre for Astronomy and Astrophysics India
University of Adelaide
University of Florida (UF)
Universität Hamburg
Monash University
LIGO Laboratory
Inje University
Stanford University
California Institute of Technology (Caltech)
California State University Fullerton
The California State University
Radboud Universität Nijmegen (RU)
University of Melbourne
Northwestern University
Laser Zentrum Hannover e.V. (LZH)
University of Glasgow
Typ
Artikel
Journal
Astrophysical Journal Letters
Band
892
Anzahl der Seiten
24
ISSN
2041-8205
Publikationsdatum
19.03.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Astronomie und Astrophysik, Astronomie und Planetologie
Elektronische Version(en)
https://arxiv.org/abs/2001.01761 (Zugang: Offen)
https://doi.org/10.3847/2041-8213/ab75f5 (Zugang: Offen)
https://doi.org/10.15488/11394 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“