Second-order computational homogenization of flexoelectric composites with isogeometric analysis

verfasst von
Bin Li, Ranran Zhang, Krzysztof Kamil Żur, Timon Rabczuk, Xiaoying Zhuang
Abstract

Flexoelectricity is an electromechanical coupling phenomenon in which electric polarization is generated in response to strain gradients. This effect is size-dependent and becomes increasingly significant at micro- and nanoscale dimensions. While heterogeneous flexoelectric materials demonstrate enhanced electromechanical properties, their effective application in nanotechnology requires robust homogenization methods. In this study, we propose a novel second-order computational homogenization framework for flexoelectricity, which combines isogeometric analysis and the finite cell method. Key innovations include the introduction of high-order periodic boundary conditions and homogenized high-order stresses, which ensure consistent multiscale analysis. Periodic boundary conditions are applied using penalty methods, and perturbation analysis is employed to efficiently compute equivalent material coefficients. The effectiveness of the proposed method is validated through numerical examples, demonstrating its ability to generate piezoelectric effects in flexoelectric microstructured materials.

Organisationseinheit(en)
Institut für Photonik
Externe Organisation(en)
Tongji University
Bialystok Technical University
Bauhaus-Universität Weimar
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
442
ISSN
0045-7825
Publikationsdatum
01.07.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Allgemeine Physik und Astronomie, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2025.118031 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“